882 research outputs found

    A new approach to evaluate gamma-ray measurements

    Get PDF
    Misunderstandings about the term random samples its implications may easily arise. Conditions under which the phases, obtained from arrival times, do not form a random sample and the dangers involved are discussed. Watson's U sup 2 test for uniformity is recommended for light curves with duty cycles larger than 10%. Under certain conditions, non-parametric density estimation may be used to determine estimates of the true light curve and its parameters

    Luminosity, Energy and Polarization Studies for the Linear Collider: Comparing e+e- and e-e- for NLC and TESLA

    Full text link
    We present results from luminosity, energy and polarization studies at a future Linear Collider. We compare e+e- and e-e- modes of operation and consider both NLC and TESLA beam parameter specifications at a center-of-mass energy of 500 GeV. Realistic colliding beam distributions are used, which include dynamic effects of the beam transport from the Damping Rings to the Interaction Point. Beam-beam deflections scans and their impact for beam-based feedbacks are considered. A transverse kink instability is studied, including its impact on determining the luminosity-weighted center-of-mass energy. Polarimetry in the extraction line from the IP is presented, including results on beam distributions at the Compton IP and at the Compton detector.Comment: 17 pages, 12 figures. Presented at 5th International Workshop on Electron-Electron Interactions at TeV Energies, December 12-14, 2003, Santa Cruz, C

    A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV

    Full text link
    Plasma wakefield acceleration (PWFA) holds much promise for advancing the energy frontier because it can potentially provide a 1000-fold or more increase in acceleration gradient with excellent power efficiency in respect with standard technologies. Most of the advances in beam-driven plasma wakefield acceleration were obtained by a UCLA/USC/SLAC collaboration working at the SLAC FFTB[ ]. These experiments have shown that plasmas can accelerate and focus both electron and positron high energy beams, and an accelerating gradient in excess of 50 GeV/m can be sustained in an 85 cm-long plasma. The FFTB experiments were essentially proof-of-principle experiments that showed the great potential of plasma accelerators. The FACET[ ] test facility at SLAC will in the period 2012-2016 further study several issues that are directly related to the applicability of PWFA to a high-energy collider, in particular two-beam acceleration where the witness beam experiences high beam loading (required for high efficiency), small energy spread and small emittance dilution (required to achieve luminosity). The PWFA-LC concept presented in this document is an attempt to find the best design that takes advantage of the PWFA, identify the critical parameters to be achieved and eventually the necessary R&D to address their feasibility. It best benefits from the extensive R&D that has been performed for conventional rf linear colliders during the last twenty years, especially ILC[ ] and CLIC[ ], with a potential for a comparably lower power consumption and cost.Comment: Submitted to the proceedings of the Snowmass Process CSS2013. Work supported in part by the U.S. Department of Energy under contract number DE-AC02-76SF0051

    Limits on Pulsar Parameters for Pulsed detections with H.E.S.S

    Full text link
    The non-detection of pulsed sub-TeV gamma-rays from EGRET pulsars proves that the EGRET pulsed spectra of all gamma-ray pulsars should terminate at energies below a few hundred GeV. The spectrum of a typical integrated pulse profile predicted by the polar cap model resemble typically a hard component, followed by a super exponential cutoff between 1 MeV (PSR B1509-58) and tens of GeV (e.g. Crab, PSR B1951+32 etc). Using a topological trigger for the H.E.S.S. Telescope System in the non-imaging mode, we show that H.E.S.S. should be able to detect pulsed emission from PSR B1706-44 within a few hours if the cutoff energy is above 30 GeV as suggested by EGRET observations. The recently detected radio pulsar PSR J1837-0604 (pulsar period: 96 ms) associated with the unidentified EGRET source GeV J1837-06010 should also be detectable within a few hours if the source is pulsed and if its cutoff is similar to that of PSR B1706-44. H.E.S.S. should even be able to image middle-aged, low-multiplicity pulsars for which the mean photon energy is expected to be well above 10 GeV. Such observations should provide important constraints on the final evolutionary status of gamma-ray pulsars and millisecond pulsars in general.Comment: 4 pages, 2 figures, in Proc. 27th ICRC, Hamburg, 07-15 August 2001, OG16

    Prospects of observing pulsed radiation from gamma-ray pulsars with H.E.S.S

    Get PDF
    Observations and theoretical studies have demonstrated that the pulsed spectra of all gamma-ray pulsars terminate at energies below a few hundred GeV. In most cases we expect this cutoff energy E_o to be around 10 GeV. Only with next generation ground-based gamma-ray telescopes, which are expected to have non-zero trigger probabilities near 10 GeV, can we expect to detect pulsations. The large gamma-ray fluxes below E_o, together with the associated sharp pulse profiles, compensate for the lack of imaging capability near threshold. For H.E.S.S. we find that the pulsed component of PSR B1706-44 should be detectable near threshold, whereas the unidentified GeV EGRET sources should be detectable if the superexponential cutoff energy is larger that approximately 30 GeV for relatively hard pulsar photon spectra (~E^-1.5).Comment: 4 pages, 2 figures, Proceedings of the Heidelberg International Symposium on High Energy Gamma-Ray Astronom

    A Spectacular VHE Gamma-Ray Outburst from PKS 2155-304 in 2006

    Full text link
    Since 2002 the VHE (>100 GeV) gamma-ray flux of the high-frequency peaked BL Lac PKS 2155-304 has been monitored with the High Energy Stereoscopic System (HESS). An extreme gamma-ray outburst was detected in the early hours of July 28, 2006 (MJD 53944). The average flux above 200 GeV observed during this outburst is ~7 times the flux observed from the Crab Nebula above the same threshold. Peak fluxes are measured with one-minute time scale resolution at more than twice this average value. Variability is seen up to ~600 s in the Fourier power spectrum, and well-resolved bursts varying on time scales of ~200 seconds are observed. There are no strong indications for spectral variability within the data. Assuming the emission region has a size comparable to the Schwarzschild radius of a ~10^9 solar mass black hole, Doppler factors greater than 100 are required to accommodate the observed variability time scales.Comment: 4 pages, 3 figures; To appear in the Proceedings of the 30th ICRC (Merida, Mexico

    Rip currents and alongshore flows in single channels dredged in the surf zone

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 3799–3816, doi:10.1002/2016JC012222.To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.National Security Science and Engineering Faculty Fellowship; Vannevar Bush Fellowship; Office of the Assistant Secretary of Defense for Research and Engineering; NDSEG; ONR; NSF2017-11-0

    Physical linkages between an offshore canyon and surf zone morphologic change

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 3451–3460, doi:10.1002/2016JC012319.The causes of surf zone morphologic changes observed along a sandy beach onshore of a submarine canyon were investigated using field observations and a numerical model (Delft3D/SWAN). Numerically simulated morphologic changes using four different sediment transport formulae reproduce the temporal and spatial patterns of net cross-shore integrated (between 0 and 6.5 m water depths) accretion and erosion observed in a ∼300 m alongshore region, a few hundred meters from the canyon head. The observations and simulations indicate that the accretion or erosion results from converging or diverging alongshore currents driven primarily by breaking waves and alongshore pressure gradients. The location of convergence or divergence depends on the direction of the offshore waves that refract over the canyon, suggesting that bathymetric features on the inner shelf can have first-order effects on short-term nearshore morphologic change.WHOI-USGS postdoctoral scholarship, NSF, ONR2017-10-2
    corecore